Reliability analysis of turbine blades based on fuzzy response surface method
نویسندگان
چکیده
To improve the precision of reliability analysis on turbine blades, the fuzzy response surface method of reliability analysis is proposed by considering the fuzziness of the input variables and the vagueness of the limit state variables. Initially, the fuzzy basic variables were converted into equivalent random variables according to the method of equivalent transformation. Additionally, the mathematic model of the fuzzy response surface for structural reliability analysis was established, based on the quadratic polynomial response surface function. The mean value and variance of the blade stress and radial deformation were obtained by using the Monte-Carlo method based on generous linkage sampling to the model. Finally, the probability of failure and fuzzy random reliability index were calculated based on the probability integral method. Results indicate that the reliability probability of the blade is 97.665%, when the allowable stress and deformation are 390 MPa and 0.195 mm, respectively. It is demonstrated that with an increase of the fuzzy coefficient, the blade reliability index decreases; thus, the random reliability of the blade is slightly higher than the fuzzy reliability.
منابع مشابه
Time-dependent Reliability Analysis for Turbine Blade in Extreme Wind Loading
In order to evaluate the reliability of turbine blades over a certain time period, a time-dependent reliability analysis model is developed in this paper for turbine blades in extreme wind loading. The extreme wind loading over a certain return period and the deterioration of the blade material are considered to investigate the time influence on the reliability of turbine blades. Only failure i...
متن کاملThermodynamic Analysis and Statistical Investigation of Effective Parameters for Gas Turbine Cycle using the Response Surface Methodology
In this paper, the statistical analyses are presented to study the thermal efficiency and power output of gas turbine (GT) power plants. For analyzing gas turbine operation and performance, a novel approach is developed utilizing the response surface methodology (RSM) which is based on the central composite design (CCD) method. An attempt is made to study the effect of some operational factors ...
متن کاملAn Improved MPPT Method of Wind Turbine Based on HCS Method by Using Fuzzy Logic System
In this paper presents a Maximum Power Point Tracking (MPPT) technique based on the Hill Climbing Search (HCS) method and fuzzy logic system for Wind Turbines (WTs) including of Permanent Magnet Synchronous Generator (PMSG) as generator. In the conventional HCS method the step size is constant, therefor both steady-state response and dynamic response of method cannot provide at the same time an...
متن کاملAcoustic condition monitoring of wind turbines: tip faults
As a significant and growing source of the world’s energy, wind turbine reliability is becoming a major concern. At least two fault detection techniques for condition monitoring of wind turbine blades have been reported in early literature, i.e. acoustic emissions and optical strain sensors. These require off-site measurement. The work presented here offers an alternative non-contact fault dete...
متن کاملModal Testing and Finite Element Analysis of Crack Effects on Turbine Blades
The study of vibration response of a turbine blade helps to detect the crack presence in the blade which alters its dynamic characteristics. The change is characterized by changes in the modal parameters associated with natural frequencies. In this paper, study of vibration response is made for turbine blade in the presence of a crack like defect. Turbine blade is initially assumed as a cantile...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Intelligent and Fuzzy Systems
دوره 29 شماره
صفحات -
تاریخ انتشار 2015